ПAmIBIA UחIVERSITY
 OF SCIEПCE AПD TECHПOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science in Applied Mathematics Honours	
QUALIFICATION CODE: 08BSHM	LEVEL: 8
COURSE CODE: FAN802S	COURSE NAME: FUNCTIONAL ANALYSIS
SESSION: \quad NOVEMBER 2022	PAPER: THEORY
DURATION: $3 H 00$	MARKS: 100

FIRST OPPORTUNITY -- QUESTION PAPER	
EXAMINER	Dr S.N. NEOSSI NGUETCHUE
MODERATOR:	

INSTRUCTIONS

1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in proofs and obtaining results.
3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)
Attachments
None

Problem 1: [35 Marks]
1-1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $x \mapsto\left\{\begin{array}{ll}0, & \text { if } x \in \mathbb{Q}, \\ 1, & \text { if } x \notin \mathbb{Q} .\end{array} \quad\right.$ Show that f is Borel-measurable.
(Hint: for any $a \in \mathbb{R}$, consider $E=\{x \in \mathbb{R}: f(x)<a\}$ and show that $f^{-1}(E) \in \mathcal{B}(\mathbb{R})$)
1-2. Let $(\mathbf{X}, \mathcal{F})$ be a measurable space. Prove that if $A_{n} \in \mathcal{F}, n \in \mathbb{N}$, then $\bigcap_{n=1}^{\infty} A_{n} \in \mathcal{F}$.
1-3. Let Ω be a non-empty set and $\mathcal{F}_{\alpha} \subset \mathcal{P}(\Omega), \alpha \in I$ an arbitrary collection of σ-algebras on Ω. State the definition of a σ-algebra and prove that

$$
\mathcal{F}:=\bigcap_{\alpha \in I} \mathcal{F}_{\alpha} \quad \text { is a } \sigma \text {-algebra. }
$$

1-4. Let (X, \mathcal{A}, μ) be a measure space.
(i) What does it mean that $(\mathrm{X}, \mathcal{A}, \mu)$ be a measure space?
(ii) Show that for any $A, B \in \mathcal{A}$, we have the equality: $\mu(A \cup B)+\mu(A \cap B)=\mu(A)+\mu(B)$.
(Hint: Consider two cases: (i) $\mu(A)=\infty$ or $\mu(B)=\infty$; (ii) $\mu(A), \mu(B)<\infty$ and then express $A, B, A \cup B$ in terms of $A \backslash B, B \backslash A, A \cap B$ where necessary.)

Problem 2: [20 Marks]
2-1. Define what is a compact set in a topological space.
2-2. Show that $(0,1]$ is not a compact set for usual topology of \mathbb{R}.
2-3. Let E be a Hausdorff topological space and $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ a sequence of elements of E converging to a. Show that $K=\left\{a_{n} \mid n \in \mathbb{N}\right\} \cup\{n\}$ is compact in E.

Problem 3: [35 Marks]
3-1. Use the convexity of $x \mapsto e^{x}$ to prove the Arithmetic-Geometric Mean inequality:

$$
\forall x, y>0 \text {, and } 0<\lambda<1 \text {, we have: } x^{\lambda} y^{1-\lambda} \leq \lambda x+(1-\lambda) y .
$$

3-2. Use the inequality in question $2-1$. to prove Young's inequality:

$$
\begin{equation*}
\alpha \beta \leq \frac{\alpha^{p}}{p}+\frac{\beta^{q}}{q}, \forall \alpha, \beta>0, \text { where } p, q \in(1, \infty): \frac{1}{p}+\frac{1}{q}=1 \text {. } \tag{6}
\end{equation*}
$$

$3-3$. Use the result in question $3-2$. to prove Hölder's inequality:

$$
\begin{equation*}
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right)^{1 / q}, \forall \mathrm{x}=\left(x_{i}\right), \mathrm{y}=\left(y_{i}\right) \in \mathbb{R}^{n}, p, q \text { as above } . \tag{7}
\end{equation*}
$$

3-4. Consider ($\mathbf{X},\|\cdot\|_{\infty, 1}$), where $\mathbf{X}=\mathcal{C}^{1}[0,1]$ and $\|f\|_{\infty, 1}=\sup _{x \in[0,1]}|f(x)|+\sup _{x \in[0,1]}\left|f^{\prime}(x)\right|$ and also consider $\left(\mathbf{Y},\|\cdot\|_{\infty}\right)$, where $\mathrm{Y}=\mathcal{C}[0,1]$.
3-4-1. Show that $T=\frac{d}{d x}: X \rightarrow Y$ is a bounded linear operator.
3-4-2. Show that $T=\frac{d}{d x}: D(T) \subsetneq Y \rightarrow Y$ is an unbounded linear operator, where $D(T)=\mathcal{C}^{1}[0,1]$. [10] (Hint: use $u_{n}(x)=\sin (n \pi x)$).

